42 research outputs found

    An informed thought experiment exploring the potential for a paradigm shift in aquatic food production

    Full text link
    The Neolithic Revolution began c. 10000 years ago and is characterised by the ultimate, near complete transition from hunting and gathering to agricultural food production on land. The Neolithic Revolution is thought to have been catalysed by a combination of local population pressure, cultural diffusion, property rights and climate change. We undertake a thought experiment that examines trends in these key hypothesised catalysts and patters of today to explore whether society could be on a path towards another paradigm shift in food production: away from hunting of wild fish towards a transition to mostly fish farming. We find similar environmental and cultural pressures have driven the rapid rise of aquaculture, during a period that has now been coined the Blue Revolution, providing impetus for such a transition in coming decades to centuries. We also highlight the interacting and often mutually reinforcing impacts of 1)technological and scientific advancement, 2)environmental awareness and collective action and 3)globalisation and trade influencing the trajectory and momentum of the Blue Revolution. We present two qualitative narratives that broadly fall within two future trajectories: 1)a ubiquitous aquaculture transition and 20commercial aquaculture and fisheries coexistence. This scenarios approach aims to encourage logical, forward thinking, and innovative solutions to complex systems dynamics. Scenario-based thought experiments are useful to explore large scale questions, increase the accessibility to a wider readership and ideally catalyse discussion around proactive governance mechanisms. We argue the future is not fixed and society now has greater foresight and capacity to choose the workable balance between fisheries sand aquaculture that supports economic, environmental, cultural and social objectives through combined planning, policies and management

    Is hypoxia’s influence restricted to the deep? Evaluation of nearshore community composition in Hood Canal, Washington, a seasonally hypoxic estuary

    Get PDF
    Hypoxia [dissolved oxygen (DO) \u3c 2 mg L-1] has been identified as a key threat to the Puget Sound ecosystem, particularly in Hood Canal. Hood Canal is subject to seasonal hypoxia in its southern reaches, and prior work has demonstrated avoidance patterns of demersal species from the deep, offshore hypoxia-impacted waters. However, the non-lethal impact of low DO conditions on the nearshore community is not well understood, despite its importance to the estuary (e.g., nursery habitat). We evaluated the nature and extent of the sub-lethal influence of hypoxia on the nearshore community using underwater video monitoring techniques. Within two regions of Hood Canal, a southern highly impacted region and a northern reference region, we recorded weekly underwater video of the benthos via transects at three depths (10, 20, 30m) to measure species density and composition. Weekly monitoring of water quality revealed strong differences in DO over time and space, with the vertical extent of low DO waters increasing markedly at the end of summer in the south. While we were unable to detect acute shifts in nearshore densities, the community composition was significantly different between the two study regions; the south was primarily composed of hypoxia tolerant invertebrates and fewer fish species compared to the north. Moreover, the tolerant invertebrates displayed a three-fold increase in presence below a specific DO threshold (mean threshold ± SE = 3.95 mg L-1 ± 0.22), while the more sensitive species (e.g., fish) declined. Post-hoc comparisons of our findings to long-term DO trends in Hood Canal revealed the potential for a more persistent low DO state in the southern reaches. As a result, this study provides further insight into the complex regional differences in community structure and potential sensitivity of the nearshore community to other perturbations in Hood Canal

    Piecing together the data of the U.S. marine aquaculture puzzle

    Get PDF
    Aquaculture recently became the main source of global seafood production and many countries, including the United States, see potential in marine aquaculture to sustainably fill growing demand. The U.S. supports the majority of its seafood consumption through imports, and therefore identifying bottlenecks to domestic aquaculture growth is a priority at the federal and state level. Yet, one critical aspect that appears not yet addressed is the quality and accessibility of marine aquaculture data. In this study we conducted the first multi-state synthesis and comparison of the most comprehensive suite of species, volume, and value information on U.S. marine aquaculture over time, across the 23 marine coastal states. Using publicly available data sources from the U.S. Department of Agriculture (USDA), state-level solicited data that we aggregated, and data from the National Oceanic and Atmospheric Administration (NOAA), we found strong evidence that marine aquaculture has played an increasingly important role in marine coastal states, but also uncovered numerous data gaps and discrepancies between and within these sources. In particular, we found a dearth of volumetric data and millions in missing value (USD$). We found U.S. marine aquaculture is likely much more diverse, abundant and valuable than is currently reported, but the main sources of error in any given state remain unclear. We recommend U.S. state governments adopt a standardized, digital and annual data collection program, such as the NOAA Fisheries Information Networks. Better strategic aquaculture planning, management, and research depend on accurate data, and existing digital data infrastructures provide strong opportunities for improvement

    Culturing for conservation: the need for timely investments in reef aquaculture

    Get PDF
    Temperate oyster and tropical coral reefs are analogous systems that create habitat for economically, ecologically, and culturally important species, and they provide countless ecosystem services to human coastal communities. Globally, reefs are imperiled by multiple anthropogenic stressors, particularly climate impacts. Using aquaculture to support conservation goals - known as conservation aquaculture - is a relatively new approach for many reef building species, but it shows great promise for promoting species recovery and bolstering resilience to stressors. Concerns about aquaculture-associated risks, both known and potential, have often restricted the implementation of this tool to an emergency intervention following dramatic declines on reefs, when species or systems were unlikely to recover. Here, we combine expertise from coral and oyster reef ecosystems to consider the role of aquaculture as a conservation intervention for reefs, and provide recommendations for its timely development and targeted implementation. We highlight the importance of evaluating reef systems - alongside local stakeholders and Indigenous communities - to determine where and when the benefits of using aquaculture are most likely to outweigh the risks. We spotlight the importance of proactive monitoring to detect reef population declines, and the value of early aquaculture interventions to increase efficacy. Novel aquaculture approaches and technologies specifically designed for reef builders are considered, including techniques for building complex, multi-generational and multi-species reefs. We address the need for scaling up aquaculture-assisted reef recovery, particularly of corals, using high volume methods like those that have been successfully employed for oysters. We also recommend the immediate assessment and development of techniques to increase climate resilience of reef builders and we identify the challenges and trade-offs of these approaches. We highlight the use of proof-of-concept projects to test these promising methods, and we advise tracking of all interventions over time to determine their long-term efficacy. Finally, we outline opportunities to leverage novel partnerships among conservation, industry, and community interests that utilize aquaculture to facilitate the conservation of reefs. Developing conservation aquaculture approaches now is critical to position managers, scientists, and restoration practitioners to implement this intervention in timely and effective ways to support resilient reef and human communities worldwide

    Mind the gap between ICES nations' future seafood consumption and aquaculture production

    Get PDF
    As the human population grows and climate change threatens the stability of seafood sources, we face the key question of how we will meet increasing demand, and do so sustainably. Many of the 20 International Council for the Exploration of the Sea (ICES) member nations have been global leaders in the protection and management of wild fisheries, but to date, most of these nations have not developed robust aquaculture industries. Using existing data and documentation of aquaculture targets from government and industry, we compiled and analysed past trends in farmed and wild seafood production and consumption in ICES nations, as well as the potential and need to increase aquaculture production by 2050. We found that the majority of ICES nations lacks long-term strategies for aquaculture growth, with an increasing gap between future domestic production and consumption—resulting in a potential 7 million tonne domestic seafood deficit by 2050, which would be supplemented by imports from other countries (e.g. China). We also found recognition of climate change as a concern for aquaculture growth, but little on what that means for meeting production goals. Our findings highlight the need to prioritize aquaculture policy to set more ambitious domestic production goals and/or improve sustainable sourcing of seafood from other parts of the world, with explicit recognition and strategic planning for climate change affecting such decisions. In short, there is a need for greater concerted effort by ICES member nations to address aquaculture’s long-term future prospects

    Impacts of ocean deoxygenation on fisheries

    Get PDF
    The effects of deoxygenation on fisheries can, at times, be difficult to truly isolate and quantify, but nevertheless are important. Effects manifest themselves through the dynamics of the populations and the fishery, and often co-vary with other environmental variables. Furthermore, oxygen and fisheries dynamics are both dependent on local conditions, making most analyses complicated and dependent on extensive data and modelling to account for the site-specific conditions

    Predator in the Pool? A Quantitative Evaluation of Non-indexed Open Access Journals in Aquaculture Research

    No full text
    Predatory open access (OA) journals can be defined as non-indexed journals that exploit the gold OA model for profit, often spamming academics with questionable e-mails promising rapid OA publication for a fee. In aquaculture—a rapidly growing and highly scrutinized field—the issue of such journals remains undocumented. We employed a quantitative approach to determine whether attributes of scientific quality and rigor differed between OA aquaculture journals not indexed in reputable databases and well-established, indexed journals. Using a Google search, we identified several non-indexed OA journals, gathered data on attributes of these journals and articles therein, and compared these data to well-established aquaculture journals indexed in quality-controlled bibliometric databases. We then used these data to determine if non-indexed journals were likely predatory OA journals and if they pose a potential threat to aquaculture research. On average, non-indexed OA journals published significantly fewer papers per year, had cheaper fees, and were more recently established than indexed journals. Articles in non-indexed journals were, on average, shorter, had fewer authors and references, and spent significantly less time in peer review than their indexed counterparts; the proportion of articles employing rigorous statistical analyses was also lower for non-indexed journals. Additionally, articles in non-indexed journals were more likely to be published by scientists from developing nations. Worryingly, non-indexed journals were more likely to be found using a Google search, and their articles superficially resembled those in indexed journals. These results suggest that the non-indexed aquaculture journals identified herein are likely predatory OA journals and pose a threat to aquaculture research and the public education and perception of aquaculture. Several points of reference from this study, in combination, may help scientists and the public more easily identify these possibly predatory journals, as these journals were typically established after 2010, publishing <20 papers per year, had fees <$1,000, and published articles <80 days after submission. Subsequently checking reputable and quality-controlled databases such as the Directory of Open Access Journals, Web of Science, Scopus, and Thompson Reuters can aid in confirming the legitimacy of non-indexed OA journals and can facilitate avoidance of predatory OA aquaculture journals
    corecore